9 research outputs found

    Extended Fault Taxonomy of SOA-Based Systems

    Get PDF
    Service Oriented Architecture (SOA) is considered as a standard for enterprise software development. The main characteristics of SOA are dynamic discovery and composition of software services in a heterogeneous environment. These properties pose newer challenges in fault management of SOA-based systems (SBS). A proper understanding of different faults in an SBS is very necessary for effective fault handling. A comprehensive three-fold fault taxonomy is presented here that covers distributed, SOA specific and non-functional faults in a holistic manner. A comprehensive fault taxonomy is a key starting point for providing techniques and methods for accessing the quality of a given system. In this paper, an attempt has been made to outline several SBSs faults into a well-structured taxonomy that may assist developers to plan suitable fault repairing strategies. Some commonly emphasized fault recovery strategies are also discussed. Some challenges that may occur during fault handling of SBSs are also mentioned

    Distributed Deep Neural-Network-Based Middleware for Cyber-Attacks Detection in Smart IoT Ecosystem: A Novel Framework and Performance Evaluation Approach

    Get PDF
    Cyberattacks always remain the major threats and challenging issues in the modern digital world. With the increase in the number of internet of things (IoT) devices, security challenges in these devices, such as lack of encryption, malware, ransomware, and IoT botnets, leave the devices vulnerable to attackers that can access and manipulate the important data, threaten the system, and demand ransom. The lessons from the earlier experiences of cyberattacks demand the development of the best-practices benchmark of cybersecurity, especially in modern Smart Environments. In this study, we propose an approach with a framework to discover malware attacks by using artificial intelligence (AI) methods to cover diverse and distributed scenarios. The new method facilitates proactively tracking network traffic data to detect malware and attacks in the IoT ecosystem. Moreover, the novel approach makes Smart Environments more secure and aware of possible future threats. The performance and concurrency testing of the deep neural network (DNN) model deployed in IoT devices are computed to validate the possibility of in-production implementation. By deploying the DNN model on two selected IoT gateways, we observed very promising results, with less than 30 kb/s increase in network bandwidth on average, and just a 2% increase in CPU consumption. Similarly, we noticed minimal physical memory and power consumption, with 0.42 GB and 0.2 GB memory usage for NVIDIA Jetson and Raspberry Pi devices, respectively, and an average 13.5% increase in power consumption per device with the deployed model. The ML models were able to demonstrate nearly 93% of detection accuracy and 92% f1-score on both utilized datasets. The result of the models shows that our framework detects malware and attacks in Smart Environments accurately and efficiently.publishedVersio

    Inductance Meter

    No full text
    Inductor is a commonly used electrical component (along with resistors and capacitors) that uses magnetic field for dealing with energy storage in the presence of electric current. Inductance meter, as the name implies, is used when inductance needs to be measured. In short, inductance meter measures the inductance value of an inductor (or coil/choke). This thesis focuses on different theoretical methods that can be used to create an inductance meter, and one of those methods is used for the purposes of this report to realize the meter in real world, and its accuracy is measured and compared to reference inductance meter devices found in the lab. The result of this thesis project is an accurate and reliable inductance meter. Accuracy is good, and measurement range is also wide, of the inductance meter built for this thesis project

    Extended Fault Taxonomy of SOA-Based Systems

    No full text

    Distributed Deep Neural-Network-Based Middleware for Cyber-Attacks Detection in Smart IoT Ecosystem: A Novel Framework and Performance Evaluation Approach

    Get PDF
    Cyberattacks always remain the major threats and challenging issues in the modern digital world. With the increase in the number of internet of things (IoT) devices, security challenges in these devices, such as lack of encryption, malware, ransomware, and IoT botnets, leave the devices vulnerable to attackers that can access and manipulate the important data, threaten the system, and demand ransom. The lessons from the earlier experiences of cyberattacks demand the development of the best-practices benchmark of cybersecurity, especially in modern Smart Environments. In this study, we propose an approach with a framework to discover malware attacks by using artificial intelligence (AI) methods to cover diverse and distributed scenarios. The new method facilitates proactively tracking network traffic data to detect malware and attacks in the IoT ecosystem. Moreover, the novel approach makes Smart Environments more secure and aware of possible future threats. The performance and concurrency testing of the deep neural network (DNN) model deployed in IoT devices are computed to validate the possibility of in-production implementation. By deploying the DNN model on two selected IoT gateways, we observed very promising results, with less than 30 kb/s increase in network bandwidth on average, and just a 2% increase in CPU consumption. Similarly, we noticed minimal physical memory and power consumption, with 0.42 GB and 0.2 GB memory usage for NVIDIA Jetson and Raspberry Pi devices, respectively, and an average 13.5% increase in power consumption per device with the deployed model. The ML models were able to demonstrate nearly 93% of detection accuracy and 92% f1-score on both utilized datasets. The result of the models shows that our framework detects malware and attacks in Smart Environments accurately and efficiently

    Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity

    No full text

    Current World Literature

    No full text
    corecore